Tetrahedron Letters No. 23, pp 1991 - 1994, 1978. © Pergamon Press Ltd. Printed in Great Britain. 0040-4039/78/0601-1991\$02.00/0

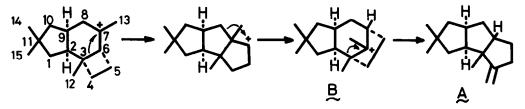
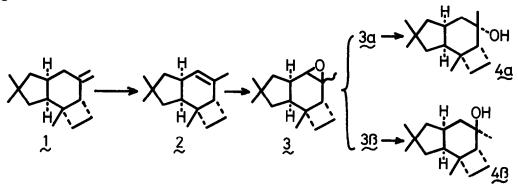
BIOGENETIC-LIKE CONVERSION OF $\Delta^{7(8)}$ -PROTOILLUDENE TO HIRSUTENE

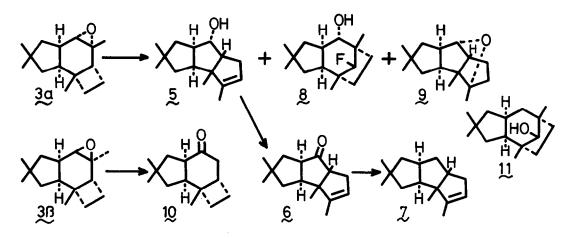
Kiyoharu Hayano, Yasufumi Ohfune, Haruhisa Shirahama and Takeshi Matsumoto

Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060 Japan

(Received in Japan 6 March 1978; received in UK for publication 10 April 1978)

Hirsutene¹⁾ A is one of the illudoid²⁾ sesquiterpenes and is supposed¹⁾ to be a biogenetic precursor of the antitumoric substance coriolin³⁾. Previously, we reported⁴⁾ a synthesis of hirsutene along the line of the assumed biosynthetic route (Fig. I), through a rearrangement of a chemically synthesized alcohol corresponding to B. We now wish to describe transformation of $\Delta^{7(13)}$ protoilludene 1²⁾ into hirsutene through a process which involves the hitherto unknown biogenetic type triple skeletal rearrangement (Fig. I) as the key step.


Fig. I

Treatment of $\Delta^{7(13)}$ -protoilludene <u>1</u> with 0.1 eq. I₂ in refluxing toluene (6hr) gave $\Delta^{7(8)}$ -protoilludene <u>2</u>⁵⁾ in 93% yield [$\delta(CCl_4)$ 0.98 (6H,s), 1.17 (3H, s), 1.58 (3H, broad s), 5.08 (1H,m), m/e 204 (M⁺)]. Epoxidation of <u>2</u> with m-CPBA in CH₂Cl₂, at 0° (1.5hr) afforded a mixture ($\alpha/\beta=1/1$) of 7,8-protoilludene oxides <u>2</u>⁵⁾ (98%), which was separated by preparative tlc (Hex-CHCl₃, 1:4) to <u>30</u>⁵⁾ [δ (CCl₄) 0.97 (3H,s), 1.09 (6H,s), 1.19 (3H,s), 2.75 (1H,d,J=1.5Hz), m/e 220 (M⁺) and <u>38</u>⁵⁾ [$\delta(CCl_4)$ 1.02 (6H,s), 1.13 (3H,s), 1.22 (3H,s), 2.56 (1H,s), m/e 220 (M^+)]. Stereochemistry of $\underline{3\alpha}$ and $\underline{3\beta}$ was determined by reduction of the each isomer with LAH in THF (16hr, 0°) to the known 7α - and 7β -protoilludanols ($\underline{4\alpha}$ and $\underline{4\beta}$)²⁾ in ca. 80% yield, respectively.

The rearrangement of 3 (isomeric mixture) was accomplished by treatment with a catalytic amount of BF_3 -etherate in dry hexane (0°, 20min) to give compounds $5^{(7.1\%)}$, $8^{(11.3\%)}$, $9^{(31.4\%)}$, and $10^{(5)}$ (30.2\%). On the other hand, treatment of 38 under the similar conditions afforded only 10 as a single isolable product (30%).

<u>endo-Hirsuten-8a-ol (5)</u>: m.p. $36^{\bullet} 37^{\bullet}$; $\delta(CCl_4)$ 0.96, 1.02, 1.10 (each 3H, s), 1.75 (3H, broad s), 3.77 (1H,d-d,J=7.5Hz), 5.3 (1H,m); m/e 220 (M⁺). The 8a configuration was assigned because 5 was produced from 3, but not from 3B. Oxidation of 5 with Jones reagent afforded a cyclopentanone 6^{5} (84.7%) [$\delta(CCl_4)$ 0.98, 1.05, 1.22 (each 3H,s), 1.72 (3H, broad s), 5.22 (1H,m), v(neat) 1740 cm⁻¹]. Treatment of the tosylhydrazone derived from 6 with NaBH₃CN and a catalytic

amount of p-TsOH in DMF/sulfolane (1/1) at $110^{\circ} (4hr)^{6}$ afforded endo-hirsutene 7, identical in all respects with the authentic sample⁴⁾. Since endo-hirsutene has been already converted to the natural hirsutene²⁾, the present experiment means the first in vitro conversion of protoilludene to hirsutene.

 $\frac{\text{cis-anti-cis-118-Fluoro-1,4,4,8-tetramethyltricyclo[6.2.1.0^{2,6}]-undecan-}{7\alpha-01~(8)}: \text{m.p. }105^{\circ}\sim107^{\circ}; \delta(\text{CDCl}_3) 0.98 (3H,s), 1.10 (6H,s), 1.12 (3H,s), 3.56 (1H,d,J=10.5Hz), 4.16 (1H,d,J=53Hz). The nmr spectrum in the presence of Eu³⁺ [Eu(fod)₃/<u>8</u>=0.30, CDCl₃] exhibited peaks at the following positions : <math>\delta$ 1.41 (3H, s,46-CH₃), 1.86 (3H,s,4\alpha-CH₃), 2.70 (3H,s,1-CH₃), 3.00 (1H,d-d,J_{3\alpha-3β}=6Hz, J_{2α-3β}=11.5Hz, 3β-H), 3.68 (1H,m,10β-H), 4.40 (1H,d-d,J_{2α-3α}=11.5Hz, J_{3α-3β}=6Hz, 3α-H), 4.41 (1H,m,10α-H), 4.73 (1H,m,9β-H), 5.00 (1H,d-t,J_{2α-6α}=7Hz, J_{2α-3α,β}=11.5 Hz, 2α-H), 5.26 (1H,d-d,J_{5β-6α}=6.5Hz, J_{5α-5β}=13.5Hz, 5β-H), 6.76 (1H,d,J_{11α-F}= 53Hz, 11α-H), 7.92 (S⁷⁾=20.8, 1H,d-d,J_{5α-5β}=13.5Hz, J_{5α-6α}=3.5Hz, 5α-H), 8.33 (S = 22.8, 1H,m, 9α-H), 10.83 (S=29.9, 1H,d-d-d-d,J_{2α-6α}=7Hz, J_{6α-7β}=9.5Hz, J_{5α-6α}= 3.5Hz, J_{5α-6α}= 3.5Hz, J_{5α-6α}=6.5Hz, J_{5α-6α}=6.5Hz, J_{5α-6α}=7Hz, J_{6α-7β}=9.5Hz, J_{5α-6α}= 3.5Hz, J_{5α-6α}=6.5Hz, J_{5α-6α}=11.5

<u>4\alpha-8a-Epoxyhirsutane (9)</u> : $\delta(CC1_4)$ 0.94, 1.07, 1.18 (each 3H,s), 2.71 (3H, m), 3.40 (1H,s) ; m/e 220 (M⁺). No hydroxyl band in the ir spectrum. The stereostructure and conformation of 9 were revealed by nmr studies. Relatively large lanthanide induced shifts of signals due to 2a-H (S=7.38), 9a-H (S=7.38), 5a-H (S=8.87), 6a-H (S=10.1) and upfield induced shift⁸) of the lla-CH₃ peak (S=-0.8) as well as the singlet nature of the 8β-H signal indicated conformation <u>D</u> (Fig. II).

<u>8-Ketoprotoilludane (10)</u>: The double resonance nmr and ir spectra of 10 [δ (CCl₄) 0.82 (3H,d,J=7Hz), 0.98, 1.09, 1.20 (each 3H,s), 2.94 (1H,quint,J=7Hz), 2.95 (1H,d-t,J=7.5, 8Hz), v(neat) 1710 cm⁻¹] showed the presence of partial structure <u>E</u> (Fig. II) and accordingly structure 10 for this compound. Comparison of the nmr spectrum in the presence of Eu(fod)₃ with that of 8-keto-13-norprotoilludene²) indicates that the two compounds have an almost identical conformation and the J_{6β-7α} value (7Hz) of the both compounds shows the 7-CH₃ group of 10 to have the β configuration⁹. It should be noted that attempted direct in vitro conversion of unsubstituted protoilludyl cation equivalents (7-protoilludanols) to hirsutene has been hitherto unsuccesfull¹⁰⁾, giving rise to alcohol <u>11</u>. However, it became clear through the present investigation that the conversion is possible, if a suitably modified, substituted substrate is used.

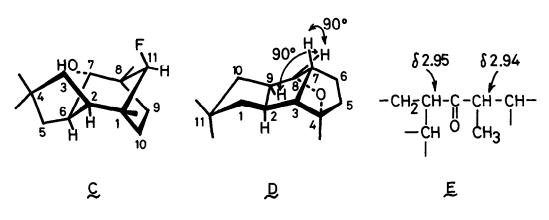


Fig. II

References and Footnotes

- 1) S. Nozoe, J. Furukawa, U. Sankawa and S. Shibata, <u>Tetrahedron Lett</u>., 195 (1976).
- 2) Y. Ohfune, H. Shirahama and T. Matsumoto, <u>Tetrahedron Lett</u>., 4377 (1975).
- 3) H. Nakamura, T. Takita and H. Umezawa, J. Antibiotics, 27, 301 (1974).
- 4) Y. Ohfune, H. Shirahama and T. Matsumoto, <u>Tetrahedron Lett</u>., 2795 (1976).
- 5) Satisfactory analytical and spectral data were obtained for this compound.
- R. O. Hutchins, B. E. Maryanoff and C. A. Milewski, <u>J. Amer. Chem. Soc</u>., <u>93</u>, 1793 (1971); ibid., <u>95</u>, 3662 (1973).
- 7) A. F. Cockerill and D. M. Rackham, <u>Tetrahedron Lett.</u>, 5149 (1970).
- 8) B. L. Shapiro, J. R. Hlubucek and G. R. Sullivan, <u>J. Amer. Chem. Soc</u>., <u>93</u>, 3281 (1971).
- 9) 8-Keto-13-norprotoilludane exhibits $J_{6B-7\alpha} = 7Hz$ and $J_{6B-7B} = 2Hz$.
- 10) Y. Ohfune, H. Shirahama and T. Matsumoto, <u>Tetrahedron Lett</u>., 2869 (1976).